

Investigating Challenges in Generalizing Neural Radiance Fields with Learned Scene Priors

Master Thesis @ VISUS

Supervisor: Shohei Mori

Examiner: Dieter Schmalstieg

Jonas Geiselhart

What are Neural Radiance Fields?

A Short Introduction

Image: Mildenhall et al. 2020

Problem

Motivation

- Retraining takes a lot of time and computational resources (Minutes to Hours)
- One main objective in NeRF research:

Mitigate the per-scene retraining overhead to a tolarable amount!

Problem

Related Works

- How is this done in related works?
 - Typically the priors get more fine grained and specific to the queried locations
 - Enforce consistency in priors through explicit algorithm, e.g.:
 - Contrastive Learning using point correspondences
 - Cost Volume Computation
 - Attentive prior selection

pixelNeRF (Yu et al. 2021). Pixelwise Prior

MVSNeRF (Chen et al. 2021) Neural Encoding Volumes

GeoNeRF (Johari et al. 2022). Attentive Priors

Proposed Approach

 Expore what happens when we focus on capturing the whole scene instead of a fine grained position- / ray-prior

- Why is this useful?
 - Only compute one prior in total → Eliminate computational overhead during Inference
 - Create a holistic prior
 → Benefit from non-local structures
 - Create a deep scene capture → Descriptive scene embedding for further neural processing

- Relaxation: Learn, distinguish and render several pretrained scenes
 - Enable gradual development towards generalizing network

Jonas Geiselhart

Theory

Free Energy Principle

- By Karl Friston (The free-energy principle: a unified brain theory?, 2010)
- Two complementary networks:
 - Recognition Network reacts to sensation and represents the cause.
 - Generative Network generates hypothesis from cause

 Move from learning geometries to perceiving geometries

Framework

- Two networks:
 - 1. Receives images as sensation outputs a latent feature representation
 - 2. Receives latent feature representation outputs position prediction

Jonas Geiselhart 17.06.2025

7

Training & Architectures (1)

Generative Network

One Version:

Scene Encoding

Jonas Geiselhart 17.06.2025

8

Training & Architectures (2)

Recognition Models

Three variations to try:

Jonas Geiselhart

Training & Architectures (3)

Training Procedure

LOSSES

- RGB-MSE Loss (Standard)
- Depth Loss
 - Depends on Dataset
- Occlusion Loss
 - Penalize near camera floaters, no difference
- Consistency Loss
 - Very Expensive
- Contrastive Loss
 - See other side

TRAINING

Challenges (1)Distinguishability

Challenges (1) Distinguishability

Challenges (1)Distinguishability

13

Challenges (1)

Distinguishability

Challenges (1)Distinguishability – Solution: One-Hot-Encoding

Challenges (2)

Overfitting

- Problem: Images are overfitted to training views
- The depth information is not extracted as good as in the one scene setting.
- Mitigation?
 - Smaller Networks, more regularization, dataset splitting ...

Challenges (2)

Overfitting

• Problem: *Images are overfitted to training views*

← Image close to training view

Image not so close →

Other Problems

Adaptions to get this to work

- NeRF learning becomes more complicated
 - Caveat: optimizations from the standard NeRF have to be reevaluated
- Learning is sensitive to:
 - Learning Rate
 - LR-Scheduling
 - Higher batching sizes have to be implemented
 - Dropout must be introduced
- The dataset must be split between reference views and training views

Results & Future Work

- Multi-Scene NeRFs are really resource intensive and instable to train
- A NeRF can be trained robustly on several scenes and recall them separately
- The main challenges of a generalized holistic prior are:
 - Distiniguishability
 - It is possible to distinguish scenes, but it is hard to do so without explicit data.
 - The One-Hot-Encoding did not build up implicit recognition.
 - Overfitting
 - The complicated task makes it harder to extract the right geometries.
 - Problem is in the Generative Model, a better regularization mechanism has to be implemented